Fibonacci Sequence in Nature



In mathematics, the Fibonacci numbers are the numbers in the following integer sequence, called the Fibonacci sequence, and characterized by the fact that every number in it is the sum of the two preceding ones:[1][2]

1,\;1,\;2,\;3,\;5,\;8,\;13,\;21,\;34,\;55,\;89,\;144,\;\ldots \;
Often, especially in modern usage, the sequence is extended by one more initial term:

0,\;1,\;1,\;2,\;3,\;5,\;8,\;13,\;21,\;34,\;55,\;89,\;144,\;\ldots \;

The Fibonacci spiral: an approximation of the golden spiral created by drawing circular arcs connecting the opposite corners of squares in the Fibonacci tiling;[4] this one uses squares of sizes 1, 1, 2, 3, 5, 8, 13, 21, and 34.
By definition, the first two numbers in the Fibonacci sequence are either 1 and 1, or 0 and 1, depending on the chosen starting point of the sequence, and each subsequent number is the sum of the previous two.

The Fibonacci sequence appears in Indian mathematics, in connection with Sanskrit prosody.In the Sanskrit tradition of prosody, there was interest in enumerating all patterns of long (L) syllables that are 2 units of duration, and short (S) syllables that are 1 unit of duration. Counting the different patterns of L and S of a given duration results in the Fibonacci numbers: the number of patterns that are m short syllables long is the Fibonacci number Fm + 1.

Susantha Goonatilake writes that the development of the Fibonacci sequence "is attributed in part to Pingala (200 BC), later being associated with Virahanka (c. 700 AD), Gopāla (c. 1135), and Hemachandra (c. 1150)". Parmanand Singh cites Pingala's cryptic formula misrau cha ("the two are mixed") and cites scholars who interpret it in context as saying that the cases for m beats (Fm+1) is obtained by adding a [S] to Fm cases and [L] to the Fm−1 cases. He dates Pingala before 450 BC.

 

Fibonacci Sequence in Nature


[embed]https://www.youtube.com/watch?v=4ToUaU4vPks[/embed]
Next PostNewer Post Previous PostOlder Post Home

0 comments:

Post a Comment